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1. Introduction 

The discovery of string dualities is reshaping the way we think about string theory. 

Indeed even the terminology “string theory” has become suspect, given the apparent dual- 

ities between certain string compactifications and compactifications of eleven-dimensional 

“M-theory” [1,2,3,4] or twelve-dimensional “F-theory” [5,6]. The heterotic, Type II, Type 

I, and Type I’ superstrings are dual descriptions of the same underlying theory. 

In light of these radical developments it is important to reexamine our understanding 

of how string theory is likely to be related to the real world. A step in this direction is 

the recent paper by Witten [7]. He observes that superstring phenomenology to date has 

assumed certain relationships between parameters which hold in the weak coupling regime 

of the heterotic string, but which may not be valid generally. In particular there is the 

famous tree-level formula [8] 

Q’MZ 
4 
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Here Q’ is the string tension (which has units of length squared); for simplicity we will 

define m, = l/a to be the string scale. Mp is the Planck mass N 10lg GeV defined from 

Newton’s constant by GN = l/M;. au = gc/4r, where gu is the unified gauge coupling. 

The parameter k is the Kac-Moody level; it is compactification dependent but of order one 

[9]. If the group is nonsimple k takes independent values for each group factor. 

Since the value of gr~ is presumably of order one, this implies that the string scale 

m, is not far below the Planck scale. The string scale determines both the scale of gauge 

coupling unification and the scale of Regge recurrences (the massive string modes). These 

are thus both predicted to be in the range 1017 - 101’ GeV. 

Reference [7] points out that this relationship of scales and couplings can be radically 

altered in the strong coupling regime of the heterotic string. This is shown by a duality map 

of the strong coupling SO(32) or Es x E8 heterotic strings, compactified to four dimensions, 

to (respectively) a weak coupling Type I string compactified to four dimensions, or M- 

theory compactified first to R1’ xS’/&, then to four dimensions. For the SO(32) string 

one finds that 
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where XI is the ten-dimensional Type I string coupling, determined dynamically by the 

vacuum expectation value of the dilaton. Since we are in the weak coupling regime for the 

Type I string (1.2) ’ can imply small values of rn: /Ms. 

In the Es x Eg case one finds that 

(1.3) 

where K is the eleven-dimensional gravitational coupling and p is the compactification 

radius in RlOxS1. Here the story is more complicated, but in [7] it is shown that, for the 

symmetric embedding of the gauge bundle, the ratio rnz/Mg can also be small consistent 

with the assumption that the ten-dimensional fields are weakly coupled. 

If the string scale is not irrevocably tied to the Planck scale, it is natural to explore 

the idea that it may instead be tied to the electroweak scale (246 GeV). I will use the name 

weals scale superstrings to denote string solutions with m, in the range from 250 GeV up 

to a few TeV. 

2. An Example in Six Dimensions 

Weak scale superstrings are a subset of the class of string solutions for which the ratio 

m,/Mp can be tuned arbitrarily small while keeping (at least some) gauge couplings of 

order one. In six dimensions the gauge coupling has dimensions of length; this defines 

an energy scale below which the six-dimensional effective gauge theory is weakly coupled. 

Thus one can examine the six-dimensional analog of weak scale superstrings by looking for 

solutions where 

where K is the six-dimensional gravitational coupling. 

There are two reasons for considering six-dimensional examples first. One is that, given 

a six-dimensional solution which satisfies (2.1), we can in general obtain four-dimensional 

solutions of the type we want by further compactifying two dimensions at a compactifica- 

tion scale which is of order one in string units. More importantly, in six dimensions the 

constraints from both anomaly cancellation and N=l spacetime supersymmetry are more 

severe than in four dimensions. This allows one to extract information more reliably from 

the interesting region of moduli space. 
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The fist example I will discuss is a six-dimensional compactification of the Type I 

super-string on a K3 22 orbifold, a class of solutions recently constructed by Gimon and 

Polchinski [lo]. These solutions have N=l (more precisely, (0,l)) spacetime supersymme- 

try, the minimal amount of supersymmetry in six dimensions. A toroidal compactification 

of such a solution to four dimensions will produce solutions with N=2 supersymmetry. In 

the case where all sixteen of the Dirichlet Sbranes are at a fixed point of the orbifold projec- 

tion, the gauge group is U(16) xU(16). The first/second U(16) is carried by Ghan-Paton 

factors associated with open strings with ends attached to Dirichlet 9-branes/5-branes, 

respectively. Moving all sixteen 5-branes away from the fixed point and turning on ap- 

propriate Wilson lines gives a very similar solution with gauge group USp( 16) x USp(l6) 

Pll- 
The massless particle content consists of the gravity multiplet, one tensor multiplet, 20 

gauge singlet hypermultiplets, the vector multiplets of U( 16) x V( IS), and hypermultiplets 

transforming under U(16) xV( 16) as a (16, IS), a (120 + 120, l), and a (1,120 + 120). 

Anomaly cancellation and spacetime supersymmetry fix completely the form of certain 

terms in the effective low energy field theory action [12,13,4]. Thus in the Einstein frame 

the action is: 

cy’ (2.2) 
-- 

8 CC w -+ + Gae+) trF,2 + . . . 
> 

. 
a=1,2 

Here 4 is the scalar component of the tensor multiplet, R is the Hicci scalar, H is the 

S-form field strength, and Fr , F2 are the V( 16) xU( 16) field strengths. 

Furthermore, the parameters ~1, us, 61, 52 are fixed by anomaly cancellation*. The 

anomaly 8-form can be written [15]: 

1. = (tr R2)2 + itr R2 c xi2) - i c xi4) + 4 c yap, 
a a a<P 

where 
Xp) = Tr FE - C nitri Fz 

i 

Y ap = c nij tri Fz trj Fi. 
ij 

* For simplicity I will ignore the U(1) anomalies. For a complete analysis, see [14]. 

(2.3) 

t 2.4) 
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Here the symbol ‘Ik denotes a trace in the adjoint representation and tri denotes a trace in 

the.representation & (of the simple group G,). ni is the number of hypermultiplets in the 

representation & of G, and nij is the number of representations (R, Rj) of G, x Gp which 

occur. The Green-Schwarz anomaly cancellation mechanism requires that the anomaly 8- 

form should factorize as 

a 

where tr denotes the trace in the fundamental representation. 

Using the trace identities of ref. [16], one finds for the U(16) xU( 16) model 

xi21 = -12trFf , 

xp = -12trFi , 

Xp =x&o ) 

Y = trF$rFz . 

(2.5) 

(2.6) 

Thus 

which implies: 

1s = ( trR2 - 2tr FF) (tr R2 - 2tr Fi) P-7) 

v1=2, e, = 0 

v2=0, G’2 = 2 
(2.8) 

The result v2=0 indicates that the gauge bosons of the second U( 16) are inherently non- 

perturbative. This is expected as they are associated with the Dirichlet 5-branes [4,17]. 

Let us now rescale from the Einstein frame to the string metric frame; this is the 

frame in which m, actually sets the scale of the Regge recurrences. Rescale the metric by 

where XI is the ten-dimensional 

e-+ 
s/w + - 

XI 
9w 

Type I string coupling. Then (2.2) becomes: 

(2.9) 

s/@z&iVI{ $R- be-‘+H’ 

- Itr Ff M3 
4b 

- -trFi+... . 
4hV1 > 

(2.10) 

where 
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can be regarded as the effective compactification volume; note this analysis in no way 

depends on an implicit assumption that VI is large. 

From (2.10) we can read off the six-dimensional gravitational and gauge couplings: 

(a’J2 vr 
TN x;(d)2 

a’ vl 
3 N A@‘)2 (2.12) 

a’ 1 
-N- 
922 XI 

The analog of weak scale superstrings thus corresponds to very weak coupling and 

small VI: 

XI << 1 , vI/(q2 = O(h) (2.13) 

In this region of moduli space we then have: 

(2.14) 

There are two widely separated energy scales. The lower scale is the scale at which the 

first Regge recurrences appear and at which the first U(16) gauge coupling gets strong. 

The higher scale is the scale at which both gravity and the second U(16) gauge coupling 

get strong. In this analogy the standard model gauge group would be embedded in the 

first U(M). 

It is also instructive to look at the equivalent heterotic or Type I’ description of these 

solutions. The table below show how the string couplings and compactification scales are 

related by duality [18,19]: 

Heterotic Type I Type I’ 

(2.15) 

In the heterotic description, we are in a region of strong coupling and large radius. In 

the Type I’ description we are also at large radius, but the ten-dimensional string coupling 

is of order one. 
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3. Another Example in Six Dimensions 

Another simple example comes from the SO(32) heterotic string compactified on K3. 

The K3 compactification requires a gauge bundle with instanton number 24. As shown 

by Witten [3], at the special region in moduli space where ah 24 instantons shrink to zero 

size, the gauge group is enhanced to SO(32) x Sp(24). The extra Sp(24) gauge bosons are 

inherently nonperturbative and are associated with solitonic 5-branes, just as the second 

U(16) in the K3 orbifold discussed above was associated with the dual Dirichlet 5-branes. 

Because of anomaly cancellation and supersymmetry the low energy effective action 

in the Einstein frame has the same form as (2.2). Th e v, 6 parameters are determined to 

be [20]: 

2132 = 1 , G32 = -2 

2124 = 0 , G24 = 2 

For the heterotic string ed is the six-dimensional effective string coupling, i.e. 

e2* xi =- 
vh 

(3-l) 

(3.2) 

where vh is the volume of K3 and Ah is the ten-dimensional string coupling. Thus the 

proper resealing from the Einstein frame to the string metric frame is given by: 

spu + eB2+gpy (3.3) 

Then (2.2) becomes: 

trFz2 w3 -- 4v tr&+... . 
h 

(3.4) 

From (3.4) we can read off the six-dimensional gravitational and gauge couplings: 

td2 h TN A;(d)2 
I v, 

2 - x;(d)2 - 2 
a’ -N 

9;4 

1 

(3.5) 
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Let us then consider the case where the ten-dimensional string coupling Ah is of order 

one, while the heterotic volume vh is large. In this region of moduli space we then have: 

(d)2 vh 
(3.6) 

. 

There are two widely separated energy scales. The lower scale is the scale at which the 

first Regge recurrences appear and at which the Sp(24) gauge coupling gets strong. The 

higher scale is the scale at which both gravity and the SO(32) gauge coupling get strong. 

In this analogy the standard model gauge group would be embedded in Sp(24). 

4. Realistic Weak Scale Super&rings 

The six-dimensional examples considered above are very far from a solution which 

could correspond to a realistic weak scale superstring. One obvious difficulty is that taking 

the compactification volume to be very large in string units (as in the second example or 

in the Type I’ picture of the first example) is a phenomenological disaster if the string 

scale itself is only a TeV. Thus for a realistic model we must suppose that the small ratio 

m,/Mp is associated with some modulus which can get a very large vev without generating 

unwanted observable light states. 

Another obvious difficulty is the notorious problem of stablizing the vev of the dilaton 

[21]. In any weak coupling limit of the superstring, the dilaton vev vanishes - another 

phenomenological disaster. As discussed by Dine and Shirman [22], a realistic superstring 

probably must reside in a region of moduli space which admits no weak coupling descrip- 

tion. Both six-dimensional examples fail this criterion, the first in the Type I description 

and the second in the Type I’ description. However this failure is not as bad as it could 

have been, since in both cases the weak coupling, small radius description is only acces- 

sible due to extra symmetry of the compactifications. In a realistic solution we should at 

any rate avoid extra symmetries which can prevent a stable nonzero dilaton vev even at 

intermediate and strong coupling [23]. 

Dine and Shirman [22] have identified a possibly unique region of the moduli space 

of four-dimensional compactifications which satisfies their criterion without requiring all 

moduli to take intermediate values. This “truly strong coupling” region corresponds to 

Ah >> 1, with the 6-dimensional compactification volume vh scaling like x2. Thus in the 

heterotic, Type I, and Type I’ pictures we have: 
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Heterotic Type1 Type I’ 

1 
XI = - 

Ah 
AZ, = O(1) (4.1) 

VI, = 0(1/h) 

Consider such solutions in the Type I description. If the 6-volume VI were large 

instead of small, we would be justified in writing the effective action as: 

g J&x&V,{ $R-gtrFz+...} . (4.2) 

where Tc=l for large volume. For weak coupling and large volume, we can read off the 

gauge and gravitational couplings from the tree-level terms in (4.2). As VI shrinks, this is 

no longer true, in general. In fact for VINXI<<~, one should regard VI as representing the 

scaling of some moduli, but not as a classical volume. 

However there is likely to be a large subclass of solutions in the “truly strong coupling” 

region where the gauge and gravitational couplings are still determined by an effective 

action of the form (4.2)’ where VI is to be regarded as some scaling function of moduli 

and the parameter k (also a function of some moduli) is of order one. As discussed above, 

we also must require that the modulus vev that makes V’ small must somehow not also 

lead to unwanted observable light states. Whether this is likely -or even possible- I do not 

know. 

For these solutions we will have cxu of order one while 

CYw; 
4 

=- 
k&au 

(4-3) 

i.e. the string scale is arbitrarily smaller than the Planck scale. Thus the “truly strong 

coupling” region (broadly interpreted) may be a likely place to find realistic weak scale 

superstrings, if they exist. 

5. Objections to Weak Scale Superstrings 

5.1. Gauge coupling unification 

In reference [7] the results summarized in the introduction were obtained in the context 

of obtaining a modest reduction in the ratio rnz/l@ beyond what is implied by (1.1). The 
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motivation is the well known apparent gauge coupling unification at - 1016 GeV implied 

by a naive renormalization group evolution of the measured low energy couplings plus 

minimal SUSY thresholds. 

However it is not at all obvious that gauge coupling unification in the string sense 

has any direct relation to this apparent unification of the standard model gauge couplings. 

Even for the heterotic string at weak coupling, we know (see the discussion below (1.1)) 

that gauge coupling unification in the string sense does not necessarily imply equality of 

the gauge couplings at some scale. Thus the only argument pinning the string scale to 

1016 GeV is the conviction that the apparent unification at that scale is “too close” to be 

a coincidence. This argument is even weaker than it seems, since it is possible that, while 

not a coincidence, the apparent unification maps into some sophisticated structure of the 

underlying string theory, without requiring an actual field theory desert between lo3 and 

1016 GeV. 

5.2. The success of weak coupling heterotic models 

A number of weak coupling heterotic string models have been built which exhibit 

an elegant confluence of favorable phenomenological attributes. These models have three 

generations of standard model chiral fermions, embed the standard model gauge group, 

and have a natural hidden sector suitable for dynamical supersymmetry breaking. They 

also exhibit new symmetries which naturally give a hierarchical structure to the Yukawa 

matrices. For recent reviews, see [24,25,26,27,28]. 

Thus one could argue that the hypothesis of weak scale superstrings moves us very 

far away from a class of string solutions which look very much like the real world. 

One problem with this argument is that it includes a number of theoretical assump- 

tions in its definition of “the real world”. Another problem is that we are only just be- 

ginning to understand the principles which control the relationships between phenomeno- 

logical attributes in such solutions. Some features of these solutions, such as symmetries 

of the superpotential which restrict Yukawa couplings, should survive if we deform the 

solutions into the intermediate coupling region [23], where (we hope) the dilaton vev is 

stabilized. But beyond this it is still premature to use these weak coupling solutions as a 

way of constraining properties of a realistic string solution. 
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5.3. Spacetime supersymmetry 

Spacetime supersymmetry is motivated in particle theory as a way to stabilize the 

hierarchy between the electroweak scale and the Planck scale. With superstrings, this ties 

in nicely with the fact that spacetime SUSY also removes tachyons from the physical string 

spectrum, and guarantees a vanishing cosmological constant. 

If the string scale is around a TeV we lose the original motivation for spacetime 

SUSY. In fact spacetime supersymmetry becomes a serious problem, since it is notoriously 

difficult to break supersymmetry in a phenomenologically acceptable way at such a low 

scale. Furthermore the supersymmetry mass splittings would now be the same order of 

magnitude as the spacing of the Regge recurrences. 

This suggests that a viable weak scale superstring solution may not exhibit spacetime 

supersymmetry in the effective field theory below the string scale. 

5.4. why the electroweak scale? 

Why the Planck scale? String dynamics softens the ultraviolet behavior of quantum 

gravity. With the possible exception of cosmology, I know of no consideration which says 

that these stringy effects cannot set in at a scale where gravitational forces are still weak. 

Of course, since the low energy effective field theory action will contain an infinite number 

of higher dimension terms suppressed by powers of the string scale, weak scale superstrings 

are constrained somewhat by low energy data -e.g. flavor changing neutral currents. But 

these constraints are no more severe than for other new physics scenarios at the TeV scale. 

6. Experimental Consequences 

The hypothesis of weak scale superstrings has spectacular consequences for collider 

physics at TeV energies. Each of the known particles of the standard model (as well as 

the graviton) sits at the base of a Regge trajectory. There are an infinite number of Regge 

recurrences, with progressively higher masses and spins. These particles carry standard 

model quantum numbers including color and are unstable. The lightest ones could have 

masses as low as a few hundred GeV without violating current experimental bounds. 

An obvious guess for the lightest Regge recurrences are the heavy spin 3/2 partners 

of light quarks and leptons. For masses in the range from a few hundred GeV to a TeV 

the heavy spin 3/2 quarks will be easier to detect than the heavy leptons. 
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The relatively light Regge recurrences may also be accompanied by relatively light 

Kaluza-Klein modes, if one or more of the effective compactification radii is of order the 

weak scale rather than the Planck scale. In this case [29] a plausible guess for the lightest 

Kaluza-Klein modes are the heavy partners of the gluons. 

In this regard it is interesting to note that either spin 3/2 heavy quarks or heavy color 

octets are possible explanations [30,31] of the excess in jet production for Et> 200 GeV 

reported by the CDF collaboration in J$ collisions at the Tevatron [32]. 

The effects of Regge recurrences on the single jet inclusive cross section will resemble 

the effects of compositeness: in both cases the amplitude has an s/M enhancement at 

high Et. However it should be possible to distinguish the higher spin Regge recurrences 

by examining the jet angular distributions. 

If the real world is a weak scale superstring the LHC will produce unintelligible results 

when operated at design energy and luminosity. It will be necessary in that case to resort 

to something like a DiTevatron or TEV33 to have any hope of sorting out the superstring 

threshold region. 

Weak scale superstrings also have profound implications for cosmology and black hole 

physics. The number of heavy string states increases exponentially with mass; this implies 

a Hagedorn temperature of a few TeV [33]. The existence of such a Hagedorn transition 

will require a radical rethinking of inflation, structure formation, and baryogenesis. 

It will be difficult to construct realistic weak scale superstring models, even if they 

exist. But if they are there, we will certainly discover them in high energy colliders. 
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